Boundedness of (ϵ,n)-complements for projective generalized pairs of Fano type
نویسندگان
چکیده
We show the existence of (ϵ,n)-complements for (ϵ,R)-complementary projective generalized pairs (X,B+M) Fano type, when either coefficients B and μj belong to a finite set, or DCC set M′≡0, where M′=∑μjMj′ Mj′ are nef Cartier divisors.
منابع مشابه
Boundedness of Log Terminal Fano Pairs of Bounded Index
A fundamental problem in classifying varieties is to determine natural subsets whose moduli is bounded. The difficulty of this problem is partially measured by the behaviour of the canonical class of the variety. Three extreme cases are especially of interest: either the canonical class is ample, that is the variety is of general type, or the canonical class is trivial, for example the variety ...
متن کاملBoundedness of Spherical Fano Varieties
Classically, G. Fano proved that the family of (smooth, anticanonically embedded) Fano 3-dimensional varieties is bounded, and moreover provided their classification, later completed by V.A. Iskovskikh, S. Mukai and S. Mori. For singular Fano varieties with log terminal singularities, there are two basic boundedness conjectures: Index Boundedness and the much stronger ǫ-lt Boundedness. The ǫ-lt...
متن کاملBoundedness theorem for Fano log-threefolds
The main purpose of this article is to prove that the family of all Fano threefolds with log-terminal singularities with bounded index is bounded.
متن کاملOn Birational Boundedness of Fano Fibrations
We investigate birational boundedness of Fano varieties and Fano fibrations. We establish an inductive step towards birational boundedness of Fano fibrations via conjectures related to boundedness of Fano varieties and Fano fibrations. As corollaries, we provide approaches towards birational boundedness and boundedness of anti-canonical volumes of varieties of -Fano type. Furthermore, we show b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2022
ISSN: ['1873-1376', '0022-4049']
DOI: https://doi.org/10.1016/j.jpaa.2021.106988